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Abstract
We discuss some aspects of the topological features of a non-interacting
two (1 + 1)-dimensional Abelian gauge theory in the framework of superfield
formalism. This theory is described by a BRST invariant Lagrangian density
in the Feynman gauge. We express the local and continuous symmetries,
Lagrangian density, topological invariants and symmetric energy–momentum
tensor of this theory in the language of superfields by exploiting the nilpotent
(anti-)BRST and (anti-)co-BRST symmetries. In particular, the Lagrangian
density and symmetric energy–momentum tensor of this topological theory
turn out to be the sum of terms that geometrically correspond to the translations
of some local superfields along the Grassmannian directions of the four
(2 + 2)-dimensional supermanifold. In this interpretation, the (anti-)BRST
and (anti-)co-BRST symmetries, that emerge after the imposition of the (dual)
horizontality conditions, play a very important role.

PACS numbers: 11.10.−z, 02.40.−k, 11.30.−j

There are many areas of research in the modern developments of theoretical high energy
physics that have brought together mathematicians as well as theoretical physicists to share
their key insights into those specific fields of investigation in a constructive and illuminating
manner. The subject of topological field theories (TFTs) [1–3] is one such area that has
provided a meeting-ground for researchers of both varieties to enrich their understanding in a
coherent and consistent fashion. Recently, the free two (1 + 1)-dimensional (2D) Abelian and
self-interacting non-Abelian gauge theories (having no interaction with matter fields) have
been shown [4, 5] to belong to a new class of TFTs that capture together some of the key
features of Witten- and Schwarz-types of TFTs [1, 2]. Furthermore, these 2D free- as well
as interacting (non-)Abelian gauge theories have been shown, in a series of papers [4–9], to
represent a class of field theoretical models for the Hodge theory where symmetries of the
Lagrangian density and their corresponding generators have been identified (algebraically)
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with the de Rham cohomology operators of differential geometry. In fact, these symmetries
and corresponding generators have been exploited to establish the topological nature of the
2D free Abelian and self-interacting non-Abelian gauge theories [5]. The analogues of the
above cohomological operators, in terms of the symmetries and corresponding generators,
have also been found for the physical four (3 + 1)-dimensional free Abelian two-form gauge
theory [10]. The geometrical interpretations for the above local and conserved generators in
the context of 2D theories have also been provided [11–13] in the framework of the superfield
formalism [14–18] where it has been shown that these conserved charges correspond to the
translation generators along the Grassmannian (odd) as well as bosonic (even) directions of
a four (2 + 2)-dimensional supermanifold. In these endeavours, a generalized version of the
so-called horizontality condition [14–16] has been exploited with respect to all the three1 super
de Rham cohomology operators (d̃, δ̃, �̃ = d̃δ̃ + δ̃d̃) of differential geometry defined on the
(2 + 2)-dimensional supermanifold without a boundary.

In all our previous attempts [11–13] to provide a geometrical interpretation for the
generators of the (anti-)BRST symmetries, (anti-)co-BRST symmetries and a bosonic
symmetry in the framework of superfield formulation, we have not found a way to capture the
topological features of the 2D free Abelian and self-interacting non-Abelian gauge theories
(without having any interaction with matter fields). The purpose of our present paper is
to show that the nilpotent

(
s2
b = s̄2

b = s2
d = s̄2

d = 0
)

(anti-)BRST symmetries (s̄b)sb and
(anti-)co-BRST symmetries (s̄d )sd , Lagrangian density, topological invariants and symmetric
energy–momentum tensor for the free 2D Abelian gauge theory can be expressed in terms
of the superfields alone and a possible geometrical interpretation can be provided for the
above physically interesting quantities in the framework of superfield formalism. We show,
in particular, that the Lagrangian density and the symmetric energy-momentum tensor can be
written as the sum of quantities that can be expressed in terms of the Grassmannian derivatives
on the Lorentz scalar(s) and second-rank tensors, respectively. These scalar(s) and tensors
are constructed from the even superfields of the theory and are found to be endowed with the
proper mass dimensions. In fact, for the present TFT (i.e. 2D free Abelian gauge theory), the
Lagrangian density and symmetric energy–momentum tensor turn out to have the geometrical
interpretation as the sum of terms which correspond to the translations of some local (but
composite) even superfields (constructed by the basic even superfields of the theory) along
the Grassmannian directions of the supermanifold. In a similar fashion, the zero-forms of the
topological invariants of this theory turn out to be translations of the local (but composite) even
superfields (constructed by the basic odd superfields of the theory) along the Grassmannian
directions of the (2 + 2)-dimensional supermanifold. These translations are generated by the
conserved and nilpotent (anti-)BRST and (anti-)co-BRST charges. One of the key features
of this TFT is the fact that the Lagrangian density and energy–momentum tensor can be
expressed in terms of the even superfields alone and the (anti-)BRST and (anti-)co-BRST
transformations act on the θ θ̄-components of the one and the same combinations of the even
superfields. The symmetric nature of the energy–momentum tensor comes out very naturally
in the framework of superfield formulation. In the above derivations, the (dual) horizontality
conditions w.r.t. super cohomological operators d̃ and δ̃ play a very significant role. These
conditions are, of course, required for the derivations of the (anti-)BRST- and (anti-)co-BRST
symmetries which, in turn, provide the geometrical interpretation for their generators as the
‘translation generators’ along the Grassmannian (θ and θ̄ ) directions of the supermanifold.

1 On an ordinary flat manifold without a boundary, a set (d, δ,�) of three cohomological operators can be defined
which obey the algebra: d2 = δ2 = 0,� = (d + δ)2 = dδ + δd ≡ {d, δ}, [�, d] = [�, δ] = 0 where d = dxµ∂µ and
δ = ± ∗ d∗ (with ∗ as the Hodge duality operation) are the nilpotent (of order 2) exterior- and co-exterior derivatives
and � is the Laplacian operator [19–22].
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The superfield formulation of the above theory also sheds light on some new symmetries of the
Lagrangian density and symmetric energy–momentum tensor (see, e.g., equations (19b) and
(38)) which were not known hitherto in our previous studies in the framework of Lagrangian
formalism [4–10].

Let us begin with the BRST invariant Lagrangian density Lb for the free two (1 + 1)-
dimensional2 Abelian gauge theory in the Feynman gauge [23–26]

Lb = − 1
4FµνFµν − 1

2 (∂ · A)2 − i∂µC̄∂µC ≡ 1
2E2 − 1

2 (∂ · A)2 − i∂µC̄∂µC (1)

where Fµν = ∂µAν − ∂νAµ is the field-strength tensor derived from the connection one-
form A = dxµAµ (with Aµ as the vector potential) by application of the exterior derivative
d = dxµ∂µ(with d2 = 0) as F = dA = 1

2 (dxµ ∧ dxν)Fµν . The gauge-fixing term is derived
as δA = (∂ · A) where δ = −∗ d∗ (with δ2 = 0) is the co-exterior derivative and ∗ is the
Hodge duality operation. The (anti-)commuting (CC̄ + C̄C = 0, C2 = C̄2 = 0) (anti-)ghost
fields (C̄)C are required in the theory to maintain unitarity and gauge invariance together.
The above Lagrangian density (1) respects the following on-shell (� C = � C̄ = 0) nilpotent(
s2
b = 0, s2

d = 0
)

BRST (sb)
3 and dual(co)-BRST (sd) symmetry transformations [4–9]

sbAµ = ∂µC sbC = 0 sbC̄ = −i(∂ · A)

sdAµ = −εµν∂
νC̄ sd C̄ = 0 sdC = −iE.

(2)

The Lagrangian density (1) is also invariant under the on-shell anti-BRST (s̄b) (with sbs̄b +
s̄bsb = 0) and anti-co-BRST (s̄d ) (with sd s̄d + s̄d sd = 0) symmetries

s̄bAµ = ∂µC̄ s̄bC̄ = 0 s̄bC = +i(∂ · A)

s̄dAµ = −εµν∂
νC s̄dC = 0 s̄d C̄ = +iE.

(3)

The anti-commutator of these nilpotent, local, continuous and covariant symmetries (i.e.
sw = {sb, sd} = {s̄b, s̄d ) leads to a bosonic symmetry4 sw

(
s2
w �= 0

)
transformations [4–9]

swAµ = ∂µE − εµν∂
ν(∂ · A) swC = 0 swC̄ = 0 (4)

under which the Lagrangian density (1) transforms to a total derivative. All the above
continuous symmetry transformations can be concisely (and succinctly) expressed, in terms
of the Noether conserved charges Qr and Q̄r [4–9], as

sr� = −i[�,Qr ]± Qr = Qb,Qd,Qw,Qg
(5)

s̄r� = −i[�, Q̄r ]± Q̄r = Q̄b, Q̄d

where brackets [ , ]± stand for the (anti-)commutators for any arbitrary generic field � being
(fermionic)bosonic in nature. Here, the conserved ghost charge Qg generates the continuous
scale transformations: C → e−�C, C̄ → e�C̄,Aµ → Aµ (where � is a global parameter).
The local field theoretical expressions for Qr and Q̄r (which are not required for our present
discussion) are given in [4–9].

The geometrical interpretation for the local and conserved (anti-)BRST (Q̄b)Qb and
(anti-)co-BRST (Q̄d)Qd charges as the translation generators along the Grassmannian
2 We follow here the conventions and notations such that the 2D flat Minkowski metric is ηµν = diag (+1,−1) and
� = ηµν∂µ∂ν = (∂0)

2 − (∂1)
2, F01 = −εµν∂µAν = E = ∂0A1 − ∂1A0, ε01 = ε10 = +1, εµρερν = δ

µ
ν . Here Greek

indices µ, ν, . . . = 0, 1 correspond to the spacetime directions on the 2D manifold.
3 We adopt here the notations and conventions of [26]. In fact, in its full glory, a nilpotent (δ2

(D)B = 0) (co-)BRST
transformation (δ(D)B) is equivalent to the product of an anti-commuting (ηC = −Cη, ηC̄ = −C̄η) spacetime-
independent parameter η and (sd)sb (i.e. δ(D)B = ηs(d)b) where s2

(d)b = 0.
4 This symmetry has not been discussed in [27] where the nilpotent transformations (2) and (3) have been discussed
on a closed 2D Riemann surface. We thank Professor N Nakanishi for some critical and constructive comments on
our earlier works and for bringing to our notice [27].
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directions of the (2 + 2)-dimensional supermanifold has been shown [11–13] in the framework
of superfield formulation [14–18] where the even (bosonic) superfield Bµ(x, θ, θ̄), and odd
(fermionic) fields �(x, θ, θ̄ ) and �̄(x, θ, θ̄) have been expanded in terms of the super
coordinates (x, θ, θ̄ ), the dynamical fields of the Lagrangian density (1) and some extra
(secondary) fields (e.g., Rµ(x), R̄µ(x), Sµ(x), s(x), s̄(x)) as given below [11]:

Bµ(x, θ, θ̄ ) = Aµ(x) + θR̄µ(x) + θ̄Rµ(x) + iθ θ̄Sµ(x)

�(x, θ, θ̄ ) = C(x) + iθ(∂ · A)(x) − iθ̄E(x) + iθ θ̄s(x)

�̄(x, θ, θ̄) = C̄(x) + iθE(x) − iθ̄ (∂ · A)(x) + iθ θ̄ s̄(x).

(6)

Here, some of the noteworthy points are: (i) the (2 + 2)-dimensional supermanifold is
parametrized by the superspace coordinates ZM = (xµ, θ, θ̄ ) where xµ(µ = 0, 1) are the
two even (bosonic) spacetime coordinates and, θ and θ̄ are the two odd (Grassmannian)
coordinates (with θ2 = θ̄2 = 0, θ θ̄ + θ̄ θ = 0). (ii) The expansions are along the
odd (fermionic) superspace coordinates θ and θ̄ and even (bosonic) (θ θ̄) directions of the
supermanifold. (iii) All the fields are local functions of the spacetime coordinates xµ alone
(i.e. Aµ(x, 0, 0) = Aµ(x), C(x, 0, 0) = C(x) etc). Now the horizontality5 condition [14–16]
on the super curvature (two-form) tensor F̃ = d̃Ã for the Abelian gauge theory

F̃ = 1
2 (dZM ∧ dZN) F̃MN = d̃Ã ≡ dA = 1

2 (dxµ ∧ dxν) Fµν = F (7)

leads to the following expressions for the extra (secondary) fields [11]:

Rµ(x) = ∂µC(x) R̄µ(x) = ∂µC̄(x) s(x) = 0

Sµ(x) = −∂µ[(∂ · A)](x) E(x) = 0 s̄(x) = 0
(8)

in terms of the basic fields (cf equation (1)) of the theory. The super curvature tensor F̃ is
constructed by the super exterior derivative d̃ and super connection one-form Ã, defined on
the (2 + 2)-dimensional supermanifold, as

d̃ = dZM∂M = dxµ∂µ + dθ∂θ + dθ̄∂θ̄

Ã = dZMÃM = dxµBµ(x, θ, θ̄ ) + dθ�̄(x, θ, θ̄ ) + dθ̄�(x, θ, θ̄ ).
(9)

The substitution of (8) into expansion (6) leads to the following:

Bµ(x, θ, θ̄ ) = Aµ(x) + θ∂µC̄(x) + θ̄ ∂µC(x) − iθ θ̄∂µ(∂ · A)(x)

≡ Aµ(x) + θ(s̄bAµ(x)) + θ̄ (sbAµ(x)) + θ θ̄(sbs̄bAµ(x))
(10a)

�(x, θ, θ̄ ) = C(x) + iθ(∂ · A)(x) ≡ C(x) + θ(s̄bC(x))

�̄(x, θ, θ̄) = C̄(x) − iθ̄ (∂ · A)(x) ≡ C̄(x) + θ̄ (sbC̄(x)).

Thus, we note that the horizontality condition in (7) leads to (i) the derivation of secondary
fields in terms of the basic fields of the Lagrangian density. (ii) The (anti-)BRST symmetry
transformations for the Lagrangian density listed in (2) and (3). (iii) Geometrical interpretation
for the (anti-)BRST charges (Q̄b)Qb as the translation generators along the Grassmannian
directions of the (2 + 2)-dimensional supermanifold, i.e.,

limθ,θ̄→0
∂

∂θ̄
Bµ = i[Qb,Aµ] ≡ sbAµ limθ,θ̄→0

∂

∂θ
Bµ = i[Q̄b,Aµ] ≡ s̄bAµ

limθ,θ̄→0
∂

∂θ̄
� = −i{Qb,C} ≡ sbC limθ,θ̄→0

∂

∂θ
� = −i{Q̄b, C} ≡ s̄bC (10b)

limθ,θ̄→0
∂

∂θ̄
�̄ = −i{Qb, C̄} ≡ sbC̄ limθ,θ̄→0

∂

∂θ
�̄ = −i{Q̄b, C̄} ≡ s̄bC̄

5 This condition is referred to as the ‘soul-flatness’ condition by Nakanishi and Ojima in [23].
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as is evident from equations (5) and (10a). It will be noted here that we have taken the
translation generators along the θ and θ̄ directions of the supermanifold as ∂

∂θ
and ∂

∂θ̄
,

respectively. (iv) The nilpotent (anti-)BRST transformations (s̄b)sb are along the Grassmannian
directions (θ)θ̄ . (v) There is a mapping between super exterior derivative d̃and the (anti-)BRST
charges as d̃ ⇔ (Qb, Q̄b). (vi) It is useful and interesting (for later convenience) to note that
now the nilpotent (anti-)BRST symmetries of equations (2) and (3) can be rewritten in terms
of the superfields as

sbBµ(x, θ, θ̄) = ∂µ�(x, θ, θ̄ ) sb�(x, θ, θ̄ ) = 0 sb�̄(x, θ, θ̄) = −i(∂ · B)(x, θ, θ̄ )

s̄bBµ(x, θ, θ̄) = ∂µ�̄(x, θ, θ̄ ) s̄b�̄(x, θ, θ̄ ) = 0 s̄b�̄(x, θ, θ̄ ) = +i(∂ · B)(x, θ, θ̄ )

(11)

where the expansions (10a) which emerge after the application of the horizontality condition
w.r.t. the super exterior derivative d̃ are taken into account. The sanctity and correctness of the
above equation can be checked easily by first applying the transformations w.r.t. δB = η sb,
and then, rederiving transformations sb from it.

The analogue6 of the horizontality condition (7) w.r.t. the super co-exterior derivative
δ̃ = −� d̃� and its operation on the super one-form connection Ã, namely

δ̃Ã = δA δ = −∗ d ∗ A = dxµAµ δA = (∂ · A)

δ̃Ã = (∂µBµ) + sθθ (∂θ�) + sθ̄ θ̄ (∂θ̄ �̄) + sθ θ̄ (∂θ �̄ + ∂θ̄�) − εµθ (∂µ� + εµν∂θB
ν)

− εµθ̄ (∂µ�̄ + εµν∂θ̄B
ν) (12)

leads to the following expression for the secondary (extra) fields in terms of the basic fields of
the Lagrangian density (1) for the theory [11, 12]:

Rµ(x) = −εµν∂
νC̄(x) R̄µ(x) = −εµν∂

νC(x) s(x) = 0

Sµ(x) = +εµν∂
νE(x) s̄(x) = 0 (∂ · A)(x) = 0.

(13)

In the above computations, the Hodge duality � operation on the super differentials (dZM)

and their wedge products (dZM ∧ dZN), defined on the (2 + 2)-dimensional supermanifold, is

�(dxµ) = εµν(dxν) �(dθ) = (dθ̄ ) �(dθ̄ ) = (dθ)

�(dxµ ∧ dxν) = εµν �(dxµ ∧ dθ) = εµθ �(dxµ ∧ dθ̄ ) = εµθ̄

�(dθ ∧ dθ) = sθθ �(dθ ∧ dθ̄ ) = sθ θ̄ �(dθ̄ ∧ dθ̄ ) = sθ̄ θ̄

(14)

where εµθ = −εθµ, εµθ̄ = −εθ̄µ, sθ θ̄ = sθ̄θ etc. In terms of the expressions (13), the super
expansion (6) can be re-expressed as

Bµ(x, θ, θ̄ ) = Aµ(x) − θεµν∂
νC(x) − θ̄εµν∂

νC̄(x) + iθ θ̄εµν∂
νE(x)

≡ Aµ(x) + θ(s̄dAµ(x)) + θ̄ (sdAµ(x)) + θ θ̄(sd s̄dAµ(x))
(15)

�(x, θ, θ̄) = C(x) − iθ̄E(x) ≡ C(x) + θ̄ (sdC(x))

�̄(x, θ, θ̄ ) = C̄(x) + iθE(x) ≡ C̄(x) + θ(s̄d C̄(x)).

We pin-point some of the salient features of the nilpotent (anti-)co-BRST symmetry
transformations vis-à-vis (anti-)BRST symmetry transformations (and their generators). The
common features are: (i) the (anti-)BRST and (anti-)co-BRST symmetry transformations are
generated along the θ(θ̄) directions of the supermanifold. (ii) geometrically, the translation
6 Henceforth, this condition w.r.t. (super) co-exterior derivatives will be called the dual horizontality condition
because (δ̃)δ and (d̃)d are Hodge dual to each other on the (super) manifold.
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generators along the Grassmannian directions of the supermanifold are the conserved and
nilpotent (anti-)BRST and (anti-)co-BRST charges (cf equation (5)). (iii) for the odd
(fermionic) superfields, the translations are either along θ or θ̄ directions for in the case
of (anti-)BRST and (anti-)co-BRST symmetries, respectively. (iv) for the bosonic superfield,
the translations are along both θ as well as θ̄ directions when we consider (anti-)BRST and/or
(anti-)co-BRST symmetries. The key differences are: (i) comparison between (10a) and (15)
shows that the (anti-)BRST transformations generate translations along (θ)θ̄ directions for
the odd fields (C)C̄. In contrast, for the same fields, the (anti-)co-BRST transformations
generate translations along (θ̄)θ directions of the supermanifold. (ii) the restrictions δ̃Ã = δA

and d̃Ã = dA (w.r.t. different cohomological operators) produce (anti-)co-BRST and (anti-)
BRST symmetry transformations. (iii) the expressions for Rµ and R̄µ in (8) and (13) are
such that the kinetic energy and gauge-fixing terms of (1) remain invariant under (anti-)BRST
and (anti-)co-BRST symmetries, respectively. (iv) it is very interesting to note that the
nilpotent (anti-)co-BRST transformations in (2) and (3) can now be re-expressed in terms of
the superfields (analogous to equation (11)) as

sdBµ(x, θ, θ̄ ) = −εµν∂
ν�̄(x, θ, θ̄ ) sd�̄(x, θ, θ̄) = 0

sd�(x, θ, θ̄ ) = +iεµν∂µBν(x, θ, θ̄) s̄d�(x, θ, θ̄ ) = 0

s̄dBµ(x, θ, θ̄ ) = −εµν∂
ν�(x, θ, θ̄ ) s̄d �̄(x, θ, θ̄) = −iεµν∂µBν(x, θ, θ̄ )

(16)

where expansions (15) have been taken into account, which are obtained after the imposition
of the dual horizontality condition with respect to the super co-exterior derivative δ̃. (v) for
the (anti-)BRST and (anti-)co-BRST symmetries, the mapping are: d̃ ⇔ (Qb, Q̄b), δ̃ ⇔
(Qd, Q̄d), but the ordinary exterior and co-exterior derivatives d and δ are identified with
(Qb, Q̄d) and (Qd, Q̄b) because of the ghost number considerations of a typical state in the
quantum Hilbert space [4–7].

Exploiting equations (2), (3) and (5), it can be checked that the Lagrangian density (1)
can be expressed, modulo some total derivatives, as

Lb = {Qd, T1} + {Qb, T2} ≡ {Q̄d , P1} + {Q̄b, P2}
(17)

Lb = sd(iT1) + sb(iT2) + ∂µY µ ≡ s̄d (iP1) + s̄b(iP2) + ∂µY µ

where T1 = 1
2 (EC), T2 = − 1

2 ((∂ · A)C̄), P1 = − 1
2 (EC̄), P2 = 1

2 ((∂ · A)C) and Yµ =
i
2 (∂µC̄C − ∂µCC̄). The above Lagrangian density can also be understood as translations,
generated by the (anti-)BRST and (anti-)co-BRST charges, along the Grassmannian (θ and θ̄ )
directions of the supermanifold as given below:

Lb = i

2

∂

∂θ
[{(εµν∂µBν)�̄}|(anti-)co-BRST + {(∂ · B)�}|(anti-)BRST] (18a)

Lb = − i

2

∂

∂θ̄
[{(εµν∂µBν)�}|(anti-)co-BRST + {(∂ · B)�̄}|(anti-)BRST] (18b)

where the subscripts (anti-)BRST and (anti-)co-BRST stand for the insertion of the expansions
given in equations (10a) and (15), respectively. It is obvious that the expression for
the Lagrangian density Lb = {Q̄d, P1} + {Q̄b, P2} of equation (17) is captured by (18a)
and Lb = {Qd, T1} + {Qb, T2} is captured by (18b) in the language of the derivatives on
the composite superfields defined on the supermanifold. Geometrically, (18a) implies the
translation (by the translation generator ∂

∂θ
) of the composite superfields (εµν∂µBν)�̄ and

(∂ · B)� along the θ -direction of the supermanifold. For this interpretation, the nilpotent
(anti-)BRST and (anti-)co-BRST symmetries, which emerge after the imposition of the (dual)
horizontality conditions with respect to the super cohomological operator(s) d̃ (and δ̃), play
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an important role. Similar interpretation can be associated with (18b) as well. In terms of the
superfield expansion in (6), we can re-express the Lagrangian density (1) (or (17)) as

Lb = i

4

∂

∂θ̄

∂

∂θ
[Bµ(x, θ, θ̄ )Bµ(x, θ, θ̄ )]|(anti-)BRST

+
i

4

∂

∂θ̄

∂

∂θ
[Bµ(x, θ, θ̄)Bµ(x, θ, θ̄)]|(anti-)co-BRST (19a)

≡ −1

2
[iR̄µRµ + AµSµ]|(anti-)BRST − 1

2
[iR̄µRµ + AµSµ]|(anti-)co-BRST

which turns out, in the language of symmetry transformations, to be equivalent to

Lb = i

4
sbs̄b(Aµ(x)Aµ(x)) +

i

4
sd s̄d (Aµ(x)Aµ(x)). (19b)

The subscripts (anti-)BRST and (anti-)co-BRST in (19a) stand for the insertion of the results
from equations (8) and (13), respectively. In fact, the Lagrangian densities in (19a) and (19b)
differ from the Lagrangian density (1) by a total derivative: 1

2∂µ[Aµ(∂ · A) + εµνA
νE]. A few

comments are in order. First, it is evident that the (θ θ̄)-component in the expansion of the
product Bµ(x, θ, θ̄ )Bµ(x, θ, θ̄ ) leads to the derivation of the Lagrangian density (1) as the sum
of terms on which the Grassmannian derivatives operate. Over and above, one has to exploit the
(anti-)BRST and (anti-)co-BRST symmetries to obtain the exact expression for the Lagrangian
density (modulo some total derivatives). Second, the horizontality condition (7) and its
analogue in (12) play a very important role in the above derivation. Third, the geometrical
interpretation for the Lagrangian density (19a) can be thought of as being equivalent to a
couple of successive translations for the Lorentz super-scalar Bµ(x, θ, θ̄ )Bµ(x, θ, θ̄) along
the θ and θ̄ directions of the supermanifold. Finally, it appears to be an essential feature
of a TFT that the Lagrangian density can be expressed as the θ θ̄-component of a Lorentz
super-scalar that can be constructed by the even superfields of the theory. On this scalar, one
has to apply (anti-)BRST and (anti-)co-BRST symmetries that emerge after the imposition of
the (dual) horizontality conditions.

Now let us concentrate on the topological invariants of the theory. For the ordinary 2D
manifold 7, there are four sets of such invariants w.r.t. conserved (Q̇b = ˙̄Qb = Q̇d = ˙̄Qd = 0)

and on-shell (�C = � C̄ = 0) nilpotent
(
Q2

b = Q̄2
b = Q2

d = Q̄2
d = 0

)
(anti-)BRST and

(anti-) co-BRST charges. These are (for k = 0, 1, 2)

Ik =
∮

Ck

Vk Ī k =
∮

Ck

V̄k Jk =
∮

Ck

Wk J̄ k =
∮

Ck

W̄k (20)

where Ck are the k-dimensional homology cycles in the 2D manifold and (V̄ k)Vk and (W̄k)Wk

are the k (=0, 1, 2)-forms which are constructed w.r.t. (anti-)BRST charges (Q̄b)Qb and
(anti-)co-BRST charges (Q̄d)Qd , respectively. The forms Vk w.r.t. the nilpotent

(
Q2

b = 0
)

and conserved (Q̇b = 0) BRST charge Qb are [5–7]

V0 = −(∂ · A)C V1 = [iC∂µC̄ − (∂ · A)Aµ] dxµ

V2 = i[Aµ∂νC̄ − C̄∂µAν] dxµ ∧ dxν.
(21)

7 The 2D Minkowskian manifold is actually a non-compact manifold. Thus, for the precise and accurate meaning of
the topological invariants, homology cycles, etc, one has to consider the Euclidean version of the 2D Minkowskian
manifold which turns out to be a closed 2D Riemann surface. Now the Greek indices µ, ν, ρ, . . . = 1, 2 will imply the
Euclidean directions and the flat metric on this manifold will carry the same signs (unlike the opposite signs for
the Minkowskian manifold). Such kinds of analyses have been performed in [27] for the 2D (non-)Abelian gauge
theories. For the sake of brevity, however, we shall continue with the Minkowskian notations but shall keep in
mind this important fact and crucial point.
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It is straightforward to check that forms V̄k w.r.t. anti-BRST charge Q̄b can be obtained from
the above by exploiting the discrete symmetry transformations C ↔ C̄, (∂ · A) ↔ −(∂ · A)

that connect BRST and anti-BRST transformations in (2) and (3). The forms Wk w.r.t. the
co-BRST charge Qd are [5–7]

W0 = EC̄ W1 = [C̄εµρ∂
ρC − iEAµ] dxµ

W2 = i

[
εµρ∂

ρCAν +
C

2
εµν(∂ · A)

]
dxµ ∧ dxν

(22)

and W̄k can be obtained from the above by the discrete symmetry transformations: C ↔ C̄,

E ↔ −E under which (anti-)co-BRST transformations in (2) and (3) are connected with each
other. In the language of the superfields Bµ(x, θ, θ̄ ),�(x, θ, θ̄ ), �̄(x, θ, θ̄ ), the topological
invariants in (21) can be recast as the θ and θ̄ independent components in

V0 = −(∂ · B)� V1 = [i�∂µ�̄ − (∂ · B)Bµ] dxµ

V2 = i[Bµ∂ν�̄ − �̄∂µBν ] dxµ ∧ dxν
(23)

where we have to use the on-shell conditions �� = � �̄ = 0,�Bµ = 0 (which imply the
validity of all the equations of motion � C = � C̄ = � Aµ = �(∂ · A) = � E = 0 for the
Lagrangian density (1)). Furthermore, we have to use expansions (10a) which are obtained
after the imposition of the horizontality condition (7). In fact, we notice here that, to obtain
the expressions for the topological invariants of the theory w.r.t. (anti-)BRST charges (Q̄b)Qb

and (anti-)co-BRST charges (Q̄d)Qd in terms of superfields, all one has to do is to replace:

C → � C̄ → �̄ Aµ → Bµ (∂ · A) → (∂ · B)

E = −εµν∂µAν → −εµν∂µBν.
(24)

This straightforward substitution yields the desired results here because the expansions in (10a)
and (15) (after the imposition of constraints d̃Ã = dA and δ̃Ã = δA) are such that the analogue
of transformations (2) and (3) are exactly imitated in terms of superfields in equations (11)
and (16), respectively. Even the on-shell (�� = � �̄ = 0) nilpotent properties of the
(anti-)co-BRST and (anti-)BRST transformations in (16) and (11) are the same as that of
the ordinary ghost fields (i.e. �C = � C̄ = 0). It is illuminating, however, to check that the
zero-forms (V̄0)V0 and (W̄0)W0 w.r.t. (anti-)BRST and (anti-)co-BRST charges can be
computed directly from the expansion of the product of the superfields �(x, θ, θ̄ )�̄(x, θ, θ̄ )

along the θ, θ̄ and θ θ̄ directions, namely,

(��̄)|(anti-)BRST = CC̄ + iθC̄(∂ · A) + iθ̄C(∂ · A) + θ θ̄(∂ · A)2

(��̄)|(anti-)co-BRST = CC̄ − iθCE − iθ̄ C̄E − θ θ̄E2
(25)

where the subscripts stand for the expansions in (10a) and (15) that are obtained after the
imposition of the horizontality and the analogue of horizontality conditions in (7) and (12),
respectively. Now, it is straightforward to check that

i
∂(��̄)|(anti-)BRST

∂θ
= V̄0 i

∂(��̄)|(anti-)BRST

∂θ̄
= V0

(26)

i
∂(��̄)|(anti-)co-BRST

∂θ
= W̄0 i

∂(��̄)|(anti-)co-BRST

∂θ̄
= W0

leads to the zero-forms of equations (21) and (22). Thus, the zero-forms in the expression
for topological invariants find a geometrical interpretation as the translations for the local
(but composite) superfields (��̄)(x, θ, θ̄) along the Grassmannian directions (θ and θ̄ ) of
the supermanifold. By construction, these quantities are (anti-)BRST and (anti-)co-BRST
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invariant. From these expressions, one can always compute the rest of the topological invariants
by exploiting the following recursion relations [5]:

sbVk = dVk−1 s̄bV̄k = dV̄k−1 d = dxµ∂µ

sbWk = δWk−1 s̄bW̄k = δW̄k−1 δ = idxµεµν∂ν

(27)

where k = 1, 2. The above relations are one of the key features for the existence of a TFT.
One of the central properties of a TFT is the lack of energy excitations in the physical sector

of the theory. This happens because of the fact that when operator form of the Hamiltonian
density (T (00)) is sandwiched between two physical states, it yields zero (see, e.g., [3]). Thus,
the form of the symmetric energy–momentum tensor

(
T (s)

µν

)
plays a very important role in

this discussion. For the Lagrangian density (Lb) of equation (1), the explicit form of the this
symmetric tensor is [5–7]

T (s)
µν = − 1

2 (∂ · A)(∂µAν + ∂νAµ) − 1
2E(εµρ∂νA

ρ + ενρ∂µAρ)
(28)

− i∂µC̄∂νC − i∂νC̄∂µC − ηµνLb.

With the help of (17) (together with transformations (2) and (3) and equation (5)), it can be
checked that the above equations can be written, modulo some total derivatives, as

T (s)
µν = {

Qb, S
(1)
µν

}
+

{
Qd, S

(2)
µν

} ≡ {
Q̄b, S̄

(1)
µν

}
+

{
Q̄d, S̄

(2)
µν

}
(29)

where the local expressions for S(1,2)
µν and S̄(1,2)

µν are

S(1)
µν = 1

2 [(∂µC̄)Aν + (∂νC̄)Aµ + ηµν(∂ · A)C̄]

S(2)
µν = 1

2 [(∂µC)ενρAρ + (∂νC)εµρA
ρ − ηµνEC]

S̄(1)
µν = − 1

2 [(∂µC)Aν + (∂νC)Aµ + ηµν(∂ · A)C]

S̄(2)
µν = − 1

2 [(∂µC̄)ενρA
ρ + (∂νC̄)εµρA

ρ − ηµνEC̄].

(30)

We can now exploit the finer details of the superfield expansions in (10a) and (15) to express
the above S in terms of the superfields. Towards this goal, it is first essential to express T and
P of (17) in the language of the superfields. It is straightforward to check, from the product of
the odd superfields in (25), that

i

2

∂

∂θ
[�(x, θ, θ̄)�̄(x, θ, θ̄ )]|(anti-)BRST = −1

2
(∂ · A)C̄ = T2

− i

2

∂

∂θ̄
[�(x, θ, θ̄ )�̄(x, θ, θ̄)]|(anti-)BRST = +

1

2
(∂ · A)C = P2

i

2

∂

∂θ
[�(x, θ, θ̄)�̄(x, θ, θ̄ )]|(anti-)co-BRST = +

1

2
(EC) = T1

− i

2

∂

∂θ̄
[�(x, θ, θ̄ )�̄(x, θ, θ̄)]|(anti-)co-BRST = −1

2
(EC̄) = P1

(31)

where the subscripts have the same interpretations as explained earlier (after equation (25)).
It will be noticed that these T and P are the same (modulo some constant factors) as the zero-
forms (26) in the topological invariants. Thus, these quantities have the same geometrical
interpretation as the zero-forms of the topological invariants. Rest of the terms in S(1,2)

µν can
be written, in terms of superfields, as
1

2

∂

∂θ
[Bµ(x, θ, θ̄)Bν(x, θ, θ̄)]|(anti-)BRST = 1

2
(AµR̄ν + R̄µAν)|(anti-)BRST

− 1

2
εµρενσ

∂

∂θ
[Bρ(x, θ, θ̄)Bσ (x, θ, θ̄ )]|(anti-)co-BRST (32)

= − 1

2
εµρενσ (AρR̄σ + R̄ρAσ )|(anti-)co-BRST.
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The rhs of the above equations can be expressed in terms of the gauge field Aµ and the
(anti-)ghost fields (C̄)C as

1
2 [(∂µC̄)Aν + (∂νC̄)Aµ] and 1

2 [(∂µC)ενρA
ρ + (∂νC)εµρA

ρ] (33)

respectively. Here in equation (33), we have substituted the values of R̄ from (8) and (13). This
equation yields, modulo some total derivatives, the desired result. Ultimately, the expression
for the S(1,2)

µν in terms of the superfields, are

S(1)
µν = 1

2

∂

∂θ
[Bµ(x, θ, θ̄ )Bν(x, θ, θ̄)]|(anti-)BRST − i

2
ηµν

∂

∂θ
[�(x, θ, θ̄ )�̄(x, θ, θ̄ )]|(anti-)BRST

S(2)
µν = −1

2
εµρενσ

∂

∂θ
[Bρ(x, θ, θ̄)Bσ (x, θ, θ̄ )]|(anti-)co-BRST (34)

− i

2
ηµν

∂

∂θ
[�(x, θ, θ̄ )�̄(x, θ, θ̄)]|(anti-)co-BRST.

Geometrically, the expression for S(1)
µν correspond to the translation of a second-rank tensor

Bµ(x, θ, θ̄ )Bν(x, θ, θ̄ ) (constructed by the even superfields) plus another second-rank tensor
ηµν�(x, θ, θ̄ )�̄(x, θ, θ̄ ) (constructed by the odd superfields) along the θ -direction of the
supermanifold. Similar interpretation can be attached to the local expression for S(2)

µν . The
local expressions for S̄(1,2)

µν can also be computed in terms of the superfields. In fact, these
depend on the derivative w.r.t. θ̄ , as given below:

S̄(1)
µν = −1

2

∂

∂θ̄
[Bµ(x, θ, θ̄ )Bν(x, θ, θ̄ )]|(anti-)BRST +

i

2
ηµν

∂

∂θ̄
[�(x, θ, θ̄)�̄(x, θ, θ̄ )]|(anti-)BRST

S̄(2)
µν = +

1

2
εµρενσ

∂

∂θ̄
[Bρ(x, θ, θ̄)Bσ (x, θ, θ̄ )]|(anti-)co-BRST (35)

+
i

2
ηµν

∂

∂θ̄
[�(x, θ, θ̄ )�̄(x, θ, θ̄)]|(anti-)co-BRST.

The geometrical interpretation in the language of the ‘translations’ can be given to the above
expressions in the same way as that of their counterparts in (34). Finally, the expression for the
symmetric energy–momentum tensor in (28) can be expressed in terms of the even superfields
alone and the Grassmannian derivatives on them, as

T (s)
µν = i

2

∂

∂θ̄

∂

∂θ
[Bµ(x, θ, θ̄ )Bν(x, θ, θ̄ )]|(anti-)BRST

− i

2
εµρενσ

∂

∂θ̄

∂

∂θ
[Bρ(x, θ, θ̄ )Bσ (x, θ, θ̄)]|(anti-)co-BRST

(36)
− i

4
ηµν

∂

∂θ̄

∂

∂θ
[Bρ(x, θ, θ̄ )Bρ(x, θ, θ̄ )]|(anti-)BRST

− i

4
ηµν

∂

∂θ̄

∂

∂θ
[Bρ(x, θ, θ̄ )Bρ(x, θ, θ̄ )]|(anti-)co-BRST

where the general expression for the first term in the above equation is
i

2

∂

∂θ̄

∂

∂θ
[Bµ(x, θ, θ̄ )Bν(x, θ, θ̄ )] = −1

2
(AµSν + SµAν) +

i

2
(RµR̄ν − R̄µRν). (37)

In this derivation, the general form of the superfield expansion (6) has been used. To obtain
the exact form of expression (28) for the symmetric energy–momentum tensor, one has to
substitute in (37), the values of the extra secondary fields Rµ, R̄µ, Sµ as quoted in equations (8)
and (13), respectively. The other terms in (36) have been calculated earlier. In fact, in terms
of the symmetry transformations, (36) can be recast as

T (s)
µν = i

2
sbs̄b

(
AµAν − 1

2
ηµνAρA

ρ

)
− i

2
sd s̄d

(
εµρενσ AρAσ +

1

2
ηµνAρA

ρ

)
. (38)
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The geometrical interpretation for T (s)
µν in (36) can be provided in the same manner as the

arguments and explanations given for the Lagrangian density after equation (19b). It appears
to be an essential feature of a TFT that its symmetric energy–momentum tensor can be
expressed as the θ θ̄-component of a second-rank tensor that can be constructed by the even
superfields of the theory. On this component, we apply the constraint conditions (8) and (13)
that emerge after the imposition of the (dual) horizontality conditions.

It is gratifying to point out that, in the superfield formulation, the symmetric form of
the energy–momentum tensor, the expressions for T(1,2), P(1,2) in (17), the expressions for
S(1,2)

µν and S̄(1,2)
µν , the correct form of the topological invariants, etc, come out very naturally.

Similarly, the form of the Lagrangian density turns out to be the Grassmannian derivatives
on the Lorentz scalar (Bρ(x, θ, θ̄ )Bρ(x, θ, θ̄ )) when we exploit the nilpotent (anti-)BRST
and (anti-)co-BRST symmetries together with the generalized versions of the horizontality
condition. To be more precise and more elaborate, it is the θ θ̄-component of the above Lorentz
scalar and the second-rank tensors: Bµ(x, θ, θ̄ )Bν(x, θ, θ̄ ) and εµρενσ Bρ(x, θ, θ̄ )Bσ (x, θ, θ̄),
that leads to the derivation of the Lagrangian density and the symmetric energy–momentum
tensor. In this derivation, the generalized versions of horizontality condition w.r.t. the super
cohomological operators d̃ and δ̃ play a very decisive role. Keeping in mind the geometrical
interpretations for the (anti-)BRST charges (Q̄b)Qb and (anti-)co-BRST charges (Q̄d)Qd as
the translation generators, it is obvious that the Lagrangian density in (17) (or its superfield
analogue (19a)) and the energy–momentum tensor in (28) (or its superfield analogue in (36))
can be thought of as the translations of superfield versions (cf equations (18a) and (18b)) of the
local composite fields T(1,2)(P(1,2)) and S(1,2)

µν

(
S̄(1,2)

µν

)
along the Grassmannian directions of the

(2 + 2)-dimensional supermanifold. These properties are some of the key requirements for
the existence of a TFT. Furthermore, it is also evident from (26) and (31) that the zero-forms
of the topological invariants and P and T of (17) are nothing but the Grassmannian (θ and θ̄ )
components in the expansion of the superfields ��̄. Geometrically, the zero-forms of the
topological invariants are nothing but the translations of the local (but composite) fields
(��̄)(x, θ, θ̄ ) along the θ and θ̄ directions of the (2 + 2)-dimensional supermanifold. It
would be nice to apply this superfield formalism to the case of 2D self-interacting non-
Abelian gauge theory and 4D free Abelian two-form gauge theory where the existence of
nilpotent (anti-)BRST and (anti-)co-BRST symmetries have been demonstrated. Such studies
might turn out to be useful in the context of topological string theories and topological gravity
where, in contrast to the flat Minkowskian metric of our present discussion, a non-trivial
(spacetime-dependent) metric is considered for the sake of generality. These are some of the
issues that are under investigation and our results will be reported elsewhere [28].
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Fülöp G and Marnelius R 1995 Nucl. Phys. B 456 442

[23] Nakanishi N and Ojima I 1990 Covariant Operator Formalism of Gauge Theories and Quantum Gravity
(Singapore: World Scientific)

[24] Nishijima K 1986 Progress in Quantum Field Theory ed H Ezawa and S Kamefuchi (Amsterdam: North-
Holland)

[25] Heannaux M and Teitelboim C 1992 Quantization of Gauge Systems (Princeton, NJ: Princeton University Press)
[26] Weinberg S 1996 The Quantum Theory of Fields: Modern Applications vol 2 (Cambridge: Cambridge University

Press)
[27] Soda J 1991 Phys. Lett. B 267 214

Hosoya A and Soda J 1989 Mod. Phys. Lett. A 4 2539
Abe M and Nakanishi N 1993 Prog. Theor. Phys. 89 501

[28] Malik R P 2002 in preparation


